姓 名:张金华
职 称:准聘副教授
所属系别:基础数学
学科专业:微分动力系统
办公地点:沙河校区E501-4
电子邮箱:jinhua_zhang@buaa.edu.cn
教育背景
l 2014-2017 勃艮第大学 理学博士 导师:Christian Bonatti
l 2011-2017 北京大学 理学博士 导师:文兰
l 2007-2011 吉林大学 理学学士
工作简历
l 2019.9— 新葡的京集团350vip8888,副教授
l 2017.9-2019.8 巴黎第十一大学数学院,博士后 (导师:Sylvain Crovisier)
科研项目
l 微分动力系统及其遍历理论,2022--2026,科技部“数学和应用研究”重点研发专项,参与(项目骨干)
l 部分双曲系统的拓扑和统计性质,2021--2025,科技部“数学和应用研究”重点研发计划青年科学家项目,参与(项目骨干)
l 中心一维部分双曲系统的熵理论和分类,2021--2023,NSFC青年基金,主持(已结题)
代表作论著
1. L.J.Diaz, J.Yang and J.Zhang, A conservative partially hyperbolic
dichotomy: hyperbolicity versus nonhyperbolic measures. Preprint. arXiv:2502.12505.
2. L.J.Diaz, K.Gelfert and J. Zhang, The amount of nonhyperbolicity for
partially hyperbolic diffeomorphisms. Preprint. arXiv:2405.12051.
3. J. Zhang, Entropy properties of mostly expanding partially hyperbolic
diffeomorphisms. Preprint. arXiv:2401.12465.
4. S. Crovisier, X. Wang, D. Yang and J. Zhang,On physical measures of
multi-singular hyperbolic vector fields. Trans. Amer. Math. Soc. 377 (2024),
no. 10, 6937-6980.
5. A. Tahzibi and J. Zhang, Disintegrations of non-hyperbolic ergodic
measures along the center foliation of DA maps. Bull. Lond. Math. Soc. 55 (2023), no.3, 1404--1418.
6. S. Gan, Y. Shi, D. Xu and J. Zhang, Centralizers of derived-from-Anosov
systems on T3 : rigidity versus triviality. Ergodic Theory Dynam. Systems 42 (2022), no. 9, 2841–2865.
7. D. Yang and J. Zhang, Ergodic optimization for some dynamical systems
beyond uniform hyperbolicity. Dyn. Syst. 37 (2022), no. 4, 630–647.
8. J. Zhang, Partially hyperbolic diffeomorphism with one dimensional neutral
center on 3-manifolds. J. Mod. Dyn. 17 (2021), 557–584.
9. S. Crovisier, D. Yang and J. Zhang, Empirical measures of partially
hyperbolic attractors. Comm. Math. Phys. 375 (2020), no.1, 725--764.
10. D. Yang and J. Zhang, Non-hyperbolic ergodic measures and horseshoes
in partially hyperbolic homoclinic classes. J. Inst. Math. Jussieu 19 (2020), no. 5, 1765-1792.
11. Ch. Bonatti and J. Zhang, Transitive partially hyperbolic diffeomorphisms
with one-dimensional neutral center. Sci. China Math.,63 (2020), no.
9, 1647--1670.
12. S. Crovisier, A. da Luz, D. Yang and J. Zhang, On the notions of singular
domination and (multi-)singular hyperbolicity. Sci. China Math., 63 (2020), no.9, 1721--1744.
13. X. Wang and J. Zhang, Ergodic measures with multi-zero Lyapunov
exponents inside homoclinic classes. J. Dynam. Differential
Equations 32 (2020), no.2, 631--664.
14. Ch. Bonatti and J. Zhang, Periodic measures and partially hyperbolic
homoclinic classes. Trans. Amer. Math. Soc. 372 (2019), no. 2, 755--802.
15. Ch. Bonatti and J. Zhang, On the existence of non-hyperbolic ergodic
measure as the limit of periodic measures. Ergodic Theory Dynam.
Systems 39 (2019), no. 11, 2932--2967.
16. Ch. Bonatti and J. Zhang, Transverse foliations on the torus T2 and
partially hyperbolic diffeomorphisms on 3-manifolds. Comment. Math. Helv. 92 (2017), no. 3, 513--550.
教学活动
l 2020年,拓扑学引论(48学时); 四年级研讨课(16学时)
l 2021年,实变函数(48学时);拓扑学引论 (48学时)
l 2022年,实变函数(48学时); 拓扑学引论(48学时)
l 2023年,拓扑学(64学时);遍历论(48学时)
l 2024年,拓扑学(64学时)
社会工作
l MathSciNet 评论员
l 为Duke. Math. J., Comm.Math.Phys., Trans.Amer.Math.Soc., Math.Z, Ergodic Theory Dynam. Systems, Discrete Contin. Dyn. Syst., Proc. Amer. Math.Soc. 等期刊审稿
l 担任数学院210922班班主任
l 担任本科生专属导师
推荐链接
l http://shi.buaa.edu.cn/ginhua1989/zh_CN/index.htm
l https://www.researchgate.net/profile/Jinhua-Zhang-8
版权所有 © 2021 版权所有 新葡的京集团350vip8888-官方网站
地址:北京市昌平区高教园南三街9号 网址 www.czhoude.com